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99/105 

Comparison of OrcaFlex with standard  

theoretical results 

1 Introduction 

A number of standard theoretical results from literature can be modelled in OrcaFlex. Such 

cases are, by virtue of being theoretically solvable, quite simple. They do, however, provide a 

very useful check for the basic mathematical model used by OrcaFlex. 

2 Analytic catenary equations 

2.1 Introduction 

It is well known that the static equilibrium configuration of an inextensible, flexible line without 

bend stiffness is a catenary shape. 

 

Figure 1: Catenary shape 

Such a line can be modelled in OrcaFlex and the configuration and tensions predicted by 

OrcaFlex can be compared with theory. Extremely close agreement is achieved, with differences 

reducing as segment length reduces. 

2.2 Catenary theory 

The catenary equations are as follows: 

A B x 
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where s  is the arclength measured from end A, w  is the weight per unit length and aTh  and 

aTv  are the horizontal and vertical components of tension at end A. 

These equations assume that the line is inelastic and so does not stretch axially. However, it is 

straightforward to modify the equations account for this. If we denote by K  the axial stiffness of 

the line, then the modified catenary equations are: 
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2.3 Comparison of OrcaFlex with theory 

We used these equations to perform a comparison with OrcaFlex using the following line data: 

Line length )(l  120 m 

Weight per unit length )(w  1.96133 kN/m 

Axial stiffness )(K  500 kN 

Horizontal span 55 m 

Vertical span 0 m 

Table 1: Catenary data 

We arranged that both ends of the line were at the same vertical position, that is the vertical 

span is 0. This allows us to calculate directly the vertical component of tension at end A, .aTv  

It is clear that the sum of vertical tension components at the ends, ba TvTv  , equals the total 

weight of the line, wl. Because of symmetry we can see also that aTv  and bTv  must be equal, 

hence .2/wlTva   

We now see that there are only two unknowns in equation (1) above, namely x  and .aTh  If we 

evaluate the equation at end B, that is for 120 ls , then we can see that x  is simply the 

horizontal span, 55m. 

So, we now have an equation with a single unknown, .aTh  The equation cannot be rearranged 

to give a direct expression for aTh  and so we solved it using the goal seek functionality in 

Microsoft Excel. This results in the theoretical solution kN.87181.19aTh  
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We modelled the same catenary line in OrcaFlex and produced the following results. We used 

progressively finer discretisation of the line and observed, as expected, that the difference 

between the OrcaFlex results and the analytic catenary equations reduced. 

Number of 

segments 

OrcaFlex 

aTh  (kN) 

% difference 

from theory 

10 19.91354 0.2100 

20 19.86744 0.0220 

30 19.86977 0.0103 

40 19.87066 0.0058 

60 19.87130 0.0026 

120 19.87168 0.0006 

Table 2: Comparison of OrcaFlex with theory 

As a final check we evaluated equation (2) at the mid-point of the line, that is for 602/  ls  to 

find the z  coordinate of the catenary at its lowest point. This produced a value of 

m.77842.57z  The OrcaFlex model with 120 segments gives a corresponding value of -

57.78257m which is a difference from the analytic solution of 0.0072%. 

3 Natural frequencies of a beam 

3.1 Introduction 

Timoshenko & Gere, Theory of Elastic Stability, 2nd edition, McGraw-Hill, 1961, Section 2.22, 

pp158-159, considers the stability and transverse vibration of a pin-ended beam. Weight forces 

are neglected. 

Such a beam is easily modelled in OrcaFlex resulting in a close match to theoretical values. 

3.2 Vibration theory 

The natural frequencies for the first mode of vibration are given by: 
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where gq /  is the mass per unit length, l  is beam length, EI  is bending stiffness and P  is 

axial compressive load. 
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3.3 Comparison of OrcaFlex with theory 

For comparison with OrcaFlex, we take the following arbitrary values: 

gq /  1.0 te/m 

l  10.0 m 

EI  1,000 kN.m2 

P  Various values (see below) 

Table 3: Data for beam 

We set the line diameter such that the line was exactly neutrally buoyant which effectively means 

that the weight forces are neglected, as in the theory. Four cases have been analysed for two 

levels of segmentation. Results are reported from the OrcaFlex modal analysis, and from a time 

domain analysis in which the beam is given a small initial deflection at mid-length. 

Natural periods for the first mode of vibration are given in the table below: 

P  (kN) Natural 

period from 

theory (s) 

Number of 

segments in 

OrcaFlex model 

Natural period 

from modal 

analysis (s) 

Natural period 

from time 

domain (s) 

0 2.013 10 2.030 2.031 

  50 2.014 2.014 

10 2.124 10 2.142 2.141 

  50 2.124 2.124 

50 2.866 10 2.902 2.902 

  50 2.867 2.867 

90 6.782 10 7.150 7.130 

  50 6.796 6.778 

Table 4: Comparison of beam natural periods 

Both the OrcaFlex modal analysis and time domain results show excellent agreement for the 

range of P considered. As would be expected we see closer agreement for the models with more 

segmentation. 

4 Cantilever beam 

4.1 Introduction 

Formulae for deflection, moment, and slope of a cantilever beam are well known. For example 

see Roark’s Formula’s for Stress and Strain, 7th edition, McGraw-Hill, 2002, Table 8.1-2a, p191. 

Cantilever beams are easily modelled in OrcaFlex and we achieve excellent agreement with 

theoretical results. 

4.2 Cantilever beam theory 

We assume that the beam is horizontal, encastré at one end and free at the other end. We 

assume a uniform vertical load, due to the beam’s self weight. The beam can be specified in 

terms of weight per unit length, aw , length l  and bend stiffness .EI  
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Standard beam theory gives the following values: 

Deflection at free end 
EI

lwa
8

4

  

Moment at fixed end 
2

2lwa
 

Slope at free end 
EI

lwa
6

3

 

Table 5: Cantilever beam theory 

4.3 Comparison of OrcaFlex with theory 

For comparison with OrcaFlex, we take the following arbitrary values: 

aw  1.667 kN/m 

l  13.0 m 

EI  25,000 kN.m2 

Table 6: Data for cantilever 

The theory assumes that the beam is inextensible, and so we used a large value of 1e9kN for 

.EA  

For this case we compared the theoretical values with OrcaFlex using models with 10, 20 and 50 

segments. The results are tabulated below: 

Theoretical results Number of segments 

in OrcaFlex model 

Results from OrcaFlex 

Deflection (m) Slope (°) Deflection (m) Slope (°) 

-0.23806 1.3989 10 -0.24037 1.4056 

  20 -0.23859 1.4004 

  50 -0.23809 1.3989 

Table 7: Comparison of cantilever theory with OrcaFlex 

From the above table it is clear that even the 10 segment model gives very good agreement with 

the theoretical values. As the number of segments is increased then the difference from theory 

reduces. 

4.4 Discussion of moment results 

We have not included the results for moment in the above comparison because they require 

slightly different treatment. The cantilever beam theory for moment neglects the effect of 

deflection – in effect it assumes that the beam is horizontal. 

OrcaFlex’s calculation fully accounts for the deflection. Because of this we would expect to see a 

difference between OrcaFlex’s reported fixed end moment and the value predicted by theory. 

The size of this difference will depend on how much deflection is present. Cases with smaller 

deflections will have smaller differences. 
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To test this we varied the deflection by means of varying the bend stiffness value .EI  For sake of 

simplicity we did not vary the discretisation of the OrcaFlex model for the moment comparisons 

– we used 50 segments throughout. 

Theory (kN.m) EI (kN.m2) OrcaFlex (kN.m) 

-140.861500 25×102 -139.044489 

 25×103 -140.842599 

 25×104 -140.861310 

 25×105 -140.861498 

Table 8: Comparison of cantilever end moments 

As expected, the difference between theory and the OrcaFlex result decreases as the cantilever 

deflection is decreased. 


